Featured Post

Sifat-sifat Unsur dan Kegunaannya

A. Hidrogen 1. Pengertian Hidrogen berasal dari bahasa Yunani, yaitu hydro yang berarti air dan genes yang berarti pembentukan. Hidrogen a...

Thursday 28 July 2016

SILIKON (Si) dan GERMANIUM (Ge)

SILIKON (Si) DAN GERMANIUM (Ge) A. Silikon

Silikon (Si) berasal dari bahasa latin yaitu silicium, memiliki nomor atom 14. Unsur kimia ini ditemukan oleh Jons Jakob Berzelius. Silikon adalah unsur kimia terbanyak kedua setelah oksigen yang berada di dalam kerak bumi, yaitu sekitar 25,7%. Terdapat di alam dalam bentuk tanah liat, granit, kuartza dan pasir, kebanyakan dalam bentuk silikon dioksida (silika) dan dalam bentuk silikat.

Silikon adalah polimer anorganik yang bervariasi, dari cairan, gel, karet, hingga sejenis plastik keras. Beberapa karakteristik khusus silikon: tak berbau, tak berwarna, kedap air, serta tak rusak akibat bahan kimia dan proses oksidasi, tahan dalam suhu tinggi, serta tidak dapat menghantarkan listrik.


Gambar 1. Padatan Silikon


Gambar 2. Ikatan kristal Silikon

1. Sifat-sifat Fisika dan Kimia

b. Sifat-sifat Kimia dari Silikon:

Silikon murni berwujud padat seperti logam dengan titik lebur 14100C. silikon dikulit bumi terdapat dalam berbagai bentuk silikat, yaitu senyawa silikon dengan oksigen. Unsur ini dapat dibuat dari silikon dioksida (SiO2) yang terdapat dalam pasir, melalui reaksi:
SiO2(s) + 2C(s) → Si(s) + 2CO(g)

Silikon murni berstruktur seperti Intan ( tetrahedral) sehingga sangat keras dan tidak menghantarkan listrik, jika dicampur dengan sedikit unsur lain, seperti alumunium (Al) atau boron (B). silikon bersifat semikonduktor (sedikit menghantarkan listrik), yang diperlukan dalam berbagai peralatan, elektronik, seperti kalkulator dan Komputer. Itulah sebabnya silikon merupakan zat yang sangat penting dalam dunia modern. Untuk itu dibutuhkan silikon yang kemurniannya sangat tinggi dan dapat dihasilkan dengan reaksi:
SiCl4(g) + 2H2(g) → Si(s) + 4HCl(g)

Jari-jari silikon lebih besar dari karbon, sehingga tidak dapat membentuk ikatan π (rangkap dua atau tiga) sesamanya, hanya ikatan tunggal (σ). Karena itu silikon tidak reaktif pada suhu kamar dan tidak bereaksi dengan asam, tetapi dapat bereaksi dengan basa kuat seperti NaOH.
Si(s) + 4OH-(aq) → SiO4(aq) + 2H2(g)

Pada suhu tinggi, silikon dapat bereaksi dengan hidrogen membentuk hidrida, dan dengan halogen membentuk halida, seperti:
Si(s) + 2H2 → SiH4
Si(s) + 2Cl2 → SiCl4

Batuan dan mineral yang mengandung silikon, umumnya merupakan zat padat yang mempunyai titik tinggi, keras, yang setiap keping darinya merupakan suatu kisi yang kontinu terdiri dari atom-atom yang terikat erat. Sebuah contoh dari zat padat demikian, adalah silikon dioksida, yang terdapat dialam dalam bentuk kuarsa, aqata (akik), pasir, dan seterusnya.


Gambar 3. Ikatan SiO2


Gambar 4. Ikatan kovalen Silikon

c. Reaksi-reaksi Silikon:

Reaksi dengan Halogen: Si + 2X2 → SiX4
Asam-oksi: H4SiO4(s) + 4 NaOH(aq) → Na4SiO4(aq) + H2O(aq)

Bila kering sebagian (parsial) asam silikat disebut gel silika (suatu asam yang agak mirip dengan garam buatan, NaCl). Dalam bentuk ini ia mempunyai kapasitas menyerap yang besar terhadap uap air, belerang dioksida, asam sitrat, benzena dan zat-zat lain, ia digunakan secara luas sebagai bahan untuk menghilangkan kelembaban dalam wadah-wadah kecil yang tertutup.

Garam-garam asam oksi dari kedua asam silikat tadi meliputi; Na2SiO3 (natrium metasilikat), Na4SiO4 (natrium ortosilikat), Mg2SiO4 (magnesium ortosilikat), LiAl(SiO3)2 (litium alumunium metasilikat). Semua silikat ini kecuali silikat dari Na+, K+, Rb+, Cs+, dan NH4+, praktis tidak larut dalam air.

Semua silikat yang larut, membentuk larutan yang bersifat basa bila dilarutkan dalam air. Ion SiO32-, bertindak sebagai basa dengan menghilangkan proton dari air.
SiO32-(aq) + H2O(aq) → HSiO3-(aq) + OH-(aq)

Suatu sifat kimia yang penting dari silikon adalah kecenderungan yang membentuk molekul yang signifikan besar. Silikon cenderung membentuk ikatan tunggal (masing-masing membentuk 4 dan 3 ikatan tunggal). Silikon membentuk molekul-molekul dan ion-ion raksasa, atom oksigen membentuk kedudukan yang berselang-seling.

2. Karakteristik Silikon

Atom silikon dapat membentuk empat ikatan secara serentak silikon dalam susunan tetrahedral, unsur Si mengkristal dengan struktur kubus pusat muka (fcc) seperti intan, silikon bersifat semi konduktor. Dalam silika SiO2, setiap atom Si terikat pada empat atom O dan tiap atom O terikat pada dua atom Si. Susunan struktur tersebut membentuk jaringan yang sangat besar, yaitu struktur kristal kovalen raksasa (seperti intan). Kuarsa mempunyai titik leleh tinggi dan bersifat insulator. Kuarsa merupakan bentuk umum untuk silika serta banyak juga silika dalam bentuk lain, sehingga umumnya disebut mineral silika. Sebagian besar silika tidak larut dalam air. Hanya silikat dari logam alkali yang dapat diperoleh sebagai senyawa yang larut dalam air. Sifat umum dari mineral silikat adalah kekomplekan anion silikatnya, namun struktur dasarnya merupakan tetrahedral sederhana dari empat atom O disekitar atom pusat Si, tetrahedral ini dapat berupa: unit terpisah; bergabung menjadi rantai atau cincin dari 2,3,4 atau 6 gugus; bergabung membentuk rantai tunggal yang panjang atau rantai ganda; tersusun dalam lembaran; terikat menjadi kerangka tiga dimensi.
SiO44-(aq) + 4H+(aq) → Si(OH)4(aq)

3. Reaktifitas silikon dan senyawanya

Kereaktifan silikon sama halnya dengan boron dan karbon yaitu sangat tak reaktif pada suhu biasa. Bila mereka bereaksi, tak ada kecendrungan dari atom-atom mereka untuk kehilangan elektron-elektron terluar dan membentuk kation sederhana, seperti B3+, C4+ dan Si4+. Ion-ion kecil ini akan mempunyai rapatan muatan begitu tinggi, sehingga eksistensinya tidaklah mungkin. Namun atom-atom ini biasanya bereaksi dengan persekutuan antara elektron merekamembentuk ikatan kovalen. Bila dipanaskan dalam udara, unsur-unsur itu bereaksi dengan oksigen dalam reaksi pembakaran yang sangat eksotermik untuk membentuk oksida B2O3, CO2 dan SiO2, ketiga oksida ini bersifat asam.

SiO2 pada hakikatnya tidak reaktif dengan air pada suhu-suhu biasa. Namun dua asam silikat sederhana adalah asam ortosilikat, H4SiO4 dan asam metasilikat, H2SiO3- Kedua senyawa ini praktis tak larut dalam air, tetapi mereka bereaksi dengan basa, contohnya
H4SiO4(s) + 4NaOH(aq) → Na4SiO4(aq) + 4H2O(aq)

Bila kering sebagian (parsial), asam silikat disebut gel silika (suatu bahan yang agak mirip dengan garam batuan, NaCl). Dalam bentuk ini, ia mempunyai kapasitas menyerap yang besar terhadap uap air, belerang dioksida, asam nitrat, benzena dan zat-zat lain. Ia digunakan secara luas sebagai bahan untuk menghilangkan kelembaban dalam wadah-wadah kecil.

4. Kegunaan silikon dan senyawa silikon

Penggunaan penting dari silikon adalah dalam pembuatan transistor, chips, komputer dan sel surya. Untuk tujuan itu diperlukan silikon ultra murni. Silikon juga digunakan dalam berbagai jenis alise dengan besi (baja). Sedangkan senyawa silikon digunakan dalam industri. Silica dan silikat digunakan untuk membuat gelas, keramik, porselin dan semen.

Larutan pekat natrium silikat (Na2SiO3), suatu zat padat amorf yang tidak berwarna, yang disebut water glass, digunakan untuk pengawetan telur dan sebagai perekat, juga sebagai bahan pengisi (fillir) dalam detergent.

Silikon karbida (SiC), merupakan zat padat yang sangat keras digunakan untuk ampelas dan pelindung untuk pesawat ulang alik terhadap suhu yang tinggi sewaktu kembali kebumi. Silica gel, suatu zat padat amorf yang sangat berfori, dibuat dengan melepas sebagian air dari asam silikat (H2SiO3) atau (SiO2H2O). silica gel bersifat higroskopis, sehingga digunakan sebagai pengering dalam berbagai macam produk.

B. Germanium

Germanium ditemukan oleh Clemens A. Winkler di Freiberg, Jerman pada tahun 1886. Germanium berasal dari bahasa latin yaitu GermaniaI. Germanium murni ditemukan dalam bentuk yang keras, berkilauan, berwarna putih keabu-abuan, tapi merupakan metalloid yang rapuh. Germanium stabil di udara dan air pada keadaan yang normal, dan sukar bereaksi dengan alkali dan asam, kecuali dengan asam nitrat. Berikut adalah senyawa germanium, GeO2, GeCl4, GeS2, SiGe.

Gambar 5. Padatan Germanium

Sumber Logam Germanium yaitu argyrodite (sulfida dari germanium dan perak) argyrodite, a sulfide of germanium and silver germanite, which contains 8 percent of the element; germanite (mengandung 8% germanium); seng ores; batu bara; dan mineral lain. Unsur ini diambil secara komersil dari debu-debu pabrik pengolahan bijih-bijih seng, dan sebagai produk sampingan beberapa pembakaran batubara. Germanium dapat dipisahkan dari logam-logam lainnya dengan cara distilasi fraksi tetrakloridanya yang sangat reaktif. Tehnik ini dapat memproduksi germanium dengan kemurnian yang tinggi.

1. Sifat-sifat fisika dan kimia

2. Kegunaan Germanium

Ketika germanium ditambahkan dengan arsenik, galium atau unsur-unsur lainnya, ia digunakan sebagai transistor dalam banyak barang elektronik. Kegunaan umum germanium adalah sebagai bahan semikonduktor. Kegunaan lain unsur ini adalah sebagai bahan pencampur logam, sebagai fosfor di bola lampu pijar dan sebagai katalis.

Germanium dan germanium oksida tembus cahaya sinar infra merah dan digunakan dalam spekstroskopi infra merah dan barang-barang optik lainnya, termasuk pendeteksi infra merah yang sensitif. Index refraksi yang tinggi dan sifat dispersi oksidanya telah membuat germanium sangat berguna sebagai lensa kamera wide-angle dan microscope objectives. Bidang studi kimia organogermanium berkembang menjadi bidang yang penting. Beberapa senyawa germanium memiliki tingkat keracunan yang rendah untuk mamalia, tetapi memiliki keaktifan terhadap beberap jenis bakteria, sehingga membuat unsur ini sangat berguna sebagai agen kemoterapi.

Germanium anorganik mampu melindungi tubuh dari pertumbuhan tumor dan kanker ganas dengan jalan memperkuat sistem imun. Germanium dibutuhkan oleh tubuh, dalam satu hari minimal 1 mg. Seperti halnya selenium, germanium juga termasuk ke dalam golongan trace mineral.

Germanium organik melindungi diri dari akumulasi amyloid, suatu produk oksidatif radikal bebas (berdasarkan riset pada tikus). Kelebihan amyloid akan menyebabkan amyloidosis, yaitu suatu penyakit yang diakibatkan ketidakseimbangan dalam proses pemecahan protein yang menyebabkan terakumulasinya amyloid. Amyloidosis diketahui berhubungan dengan penyakit inflammatori kronis, kelainan sel plasma, deposisi amyloid di organ neuroendokrin, dan defisiensi kongenital enzim (terutama enzim yang berperan dalam penguraian prekursor amyloid). Selain itu, germanium organik juga melindungi sistein (suatu asam amino sulfhidril) dari oksidasi.

No comments:

Post a Comment